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Abstract

Background People with polycystic ovary syndrome suffer from many symptoms and are at risk of developing
diseases such as hypertension and diabetes in the future. Therefore, the importance of self-care doubles. It is mainly to
modify the lifestyle, especially following the principles of healthy eating. The purpose of this study is to review artificial
intelligence-based systems for providing management recommendations, especially food recommendations.

Materials and methods This study started by searching three databases: PubMed, Scopus, and Web of Science,
from inception until 6 June 2023. The result was the retrieval of 15,064 articles. First, we removed duplicate studies.
After the title and abstract screening, 119 articles remained. Finally, after reviewing the full text of the articles and
considering the inclusion and exclusion criteria, 20 studies were selected for the study. To assess the quality of articles,
we used criteria proposed by Malhotra, Wen, and Kitchenham. Out of the total number of included studies, seventeen
studies were high quality, while three studies were moderate quality.

Results Most studies were conducted in India in 2021. Out of all the studies, diagnostic recommendation systems
were the most frequently researched, accounting for 86% of the total. Precision, sensitivity, specificity, and accuracy
were more common than other performance metrics. The most significant challenge or limitation encountered in
these studies was the small sample size.

Conclusion Recommender systems based on artificial intelligence can help in fields such as prediction, diagnosis,
and management of polycystic ovary syndrome. Therefore, since there are no nutritional recommendation systems
for these patients in Iran, this study can serve as a starting point for such research.
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recommender system

*Correspondence:

Alireza Banaye Yazdipour

byazdipoura@razi.tums.ac.ir; alirezayazdipour20@gmail.com
Fahimeh Solat

fahimehsolat78@gmail.com

Full list of author information is available at the end of the article

©The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available
in this article, unless otherwise stated in a credit line to the data.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12905-024-03074-3&domain=pdf&date_stamp=2024-4-10

Shahmoradi et al. BMC Women's Health (2024) 24:234

Introduction

Polycystic ovary syndrome affects 8 to 13% of women of
reproductive age worldwide, making it the most common
endocrine problem. This condition can cause menstrual
disorders, lack of ovulation, obesity, acne, hirsutism, hair
loss, and baldness. Long-term complications include
endometrial cancer, infertility, insulin resistance, type 2
diabetes, high blood pressure, heart disease, depression,
and stress. Short-term consequences and complications
may also arise [1]. Early diagnosis of the disease is very
important and can reduce the duration of the disease and
the mortality rate. Studies show that in many diseases,
early diagnosis is difficult for health care providers. On
the other hand, patients do not have the information
related to self-management and do not have the necessary
knowledge to obtain this information. Social withdrawal
may become more prevalent as physical symptoms like
acne, hair loss, and depression manifest [2—4]. Follow-
ing diagnosis, implementing lifestyle modifications to
address symptoms like elevated cholesterol and insu-
lin resistance is recognized as an innovative therapeutic
approach. Given the prevalent overweight status among
women with this syndrome, the significance of adhering
to a nutritious diet and engaging in physical activity has
been underscored. Consequently, the imperative of devis-
ing strategies to promote adherence to healthy dietary
habits and facilitate weight loss among affected individu-
als is deemed essential and inevitable [1].

The use of information technology greatly facilitates
the prevention, diagnosis and treatment of chronic dis-
eases and increases their accuracy. Among these tech-
nologies, it can be mentioned decision support systems,
mobile-based applications, virtual reality, augmented
reality, and intelligent decision-making systems. These
technologies largely solve the challenge of accessing data
and evidence-based information for both patients and
medical providers [5-10].

In the healthcare domain, recommender systems rep-
resent a practical technology enabling self-care through
tailored recommendations. Ultrasound imaging can sup-
port early disease detection, alleviating healthcare pro-
vider workload and expediting diagnosis. This strategy
not only conserves resources and reduces expenses but
also leverages mobile phone platforms to enhance aware-
ness, disseminate evidence-based knowledge, and foster
beneficial shifts in individual behaviors and habits. By
harnessing artificial intelligence, a recommender sys-
tem can enhance dietary practices among patients with
PCOS, leveraging the widespread adoption of smart-
phones to improve access to medical professionals and
reliable information [2, 4].

The study conducted by Jan et al. in India in 2022 ana-
lyzed six Al models for diagnosing PCOS. They com-
pared these models based on the number of ultrasound
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images, segmentation, and classification methods.
The evaluation highlighted that the Bayesian classi-
fier achieved the highest accuracy of 93.93%. This study
underscores the significant potential of Al in diagnosing
PCOS and recommends further research to implement
this technology effectively [11].

Boyle et al. conducted a study in Australia in 2018 to
assess the need for assistance among individuals with
PCOS and evaluate mobile health applications in this
area. The results show that 98% of participants owned
smartphones, 72% had previously used an application for
self-care, and 91% expressed willingness to use a PCOS-
specific app if available for managing this syndrome.
Accurate, evidence-based information was deemed
essential in this study, and all the assessed applications
met the required quality standards [12].

The research conducted by Portugal et al. in Canada in
2017 focused on the use of machine learning techniques
in recommender systems. The study aimed to identify
associated issues and assist researchers in implementing
these systems more effectively. The findings of the study
highlighted various machine learning techniques and
their applications, as well as primary and alternative per-
formance criteria [13].

In 2019, Abhari et al. conducted a study in Iran to
assess the characteristics of nutritional recommender
systems. The study revealed that if these systems are
properly designed, implemented, and evaluated, they can
serve as effective tools to improve nutrition and promote
a healthy lifestyle [14].

The study conducted in India in 2021 by Kaur and col-
leagues aimed to develop a method for classifying food
images to track patients’ meals and provide guidance to
nutritionists on recommended tactics and image classi-
fication. The research focused on utilizing deep learning
approaches, particularly convolutional neural networks
(CNN:s), to classify Indian food images accurately [15].

After conducting research, we found no systematic
review that assesses nutritional recommendations for
individuals with PCOS. Given the significance of utiliz-
ing companion health and Al in managing chronic condi-
tions like PCOS, this study aims to explore the effects and
uses of Al-based systems for PCOS.

Motivation

The advancement of Al in healthcare has made it nec-
essary to use Al-powered recommender systems for
predicting, diagnosing, treating, and managing chronic
ailments like PCOS. There are several reasons why this
is important. Ultrasound images are necessary to diag-
nose PCOS. However, inaccuracies in counting follicles,
high diagnostic test costs in developing countries, time-
consuming tests, doctor workload, and diagnostic errors
can lead to inaccurate diagnoses. Al techniques can
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automatically diagnose diseases using ultrasound images,
overcoming challenges [16-18]. Additionally, since this
disease is intricate and has no definitive treatment, the
current approach involves a combination of medication
and lifestyle changes for disease management. Hence,
utilizing recommender systems or self-care systems that
prioritize healthy nutrition could be beneficial in mitigat-
ing symptoms and lessening the likelihood of associated
mental health issues [19, 20]. Besides disease prediction
and probability estimation, recommender systems can
detect suspicious cases based on Al and take action to
prevent disease occurrence or early detection [21].

Contribution

The article aims to explore the use of artificial rec-
ommender systems in polycystic ovary syndrome
research. We also examine the challenges and limita-
tions of using these systems and algorithms. This article
attracts researchers to conduct studies in the field of
recommender systems. The sections of this article are as
follows:

+ Review of studies from the perspective of
publication.

+ Review studies of characteristics.

+ Examining the limitations and challenges of
designing recommender systems.

Materials and methods

Study design

The current systematic study was designed and imple-
mented based on the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA)
statement.

Data sources

In this study, we were six researchers. The first one deter-
mined the search strategy and performed the search in
PubMed, Scopus, and Web of Science databases from
inception until 6 June 2023. To conduct a search for rele-
vant articles, we utilized a combination of keywords from
the article abstracts, including “polycystic ovary syn-
drome”, “recommender system’, “application program’,
“artificial intelligence” and “nutritional program”. We also
incorporated Medical Subject Headings (Mesh) into our
search strategy. For the complete search strategy, please
refer to the supplementary file provided (Table S1-S3).

Selection criteria

One of the researchers determined the inclusion and
exclusion criteria based on similar studies, and finally
criteria were approved by the supervisor’s opinion. Inclu-
sion and exclusion criteria are as follows:
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Inclusion criteria:

1
2
3
4

Studies about recommender systems

Articles related to PCOS

Articled related to diet management in PCOS
Studies that developed an Al system or application

= O —

Exclusion criteria:

1) Review articles, meta-analysis, conference abstracts,
letters to the editor, book chapter.

2) Articles that are unrelated to the goals of the current
research.

3) Articles whose full text is written in non-English
language.

4) Articles whose full text is not available for data
extraction.

Study selection

In this stage, one of the researchers entered all the arti-
cles retrieved from the three databases (PubMed, Web
of Science, and Scopus) into the Endnote X9 (Thomson
Reuters, Toronto, Ontario, Canada) software. Another
researcher removed duplicates. Two of researchers sepa-
rately, checked the title and abstract of the articles. The
items that did not match the inclusion and exclusion
criteria were excluded from the study. Finally, by study-
ing and examining the full text of the remaining articles,
he selected the articles related to the topic as the final
articles. In cases where the two researchers had differing
opinions, the supervisor provided the final decision.

Data extraction

A researcher created an Excel form with the guidance
of our supervisor. The research team reviewed articles
and extracted necessary data elements. The Excel form
included data such as the number of articles, publication
year and country.

Quality assessment

Two independent reviewers assessed the quality of stud-
ies using the Newcastle-Ottawa quality assessment cri-
teria proposed by Malhotra [17], Wen et al. [16], and
Kitchenham et al. [18]. The quality assessment criteria
consist of eleven questions: Q1) Are the aims of the study
clearly defined?; Q2) Are all study questions answered?;
Q3) Are the variables used in the study clearly stated?;
Q4) Are Al techniques, such as machine learning, clearly
defined?; Q5) Is the data set size appropriate?; Q6) Is the
data collection method clearly stated?; Q7) Is the study
methodology repeatable?; Q8) Are the results and find-
ings clearly presented?; Q9) Are the performance mea-
sures used to assess the model(s) clearly stated?; Q10)
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Are the limitations of the study stated?; Q11) Does the
research have value for the academic or industry commu-
nity? The questions were ranked based on three values:
“Yes=2", “Partial=1", or “No=0" Each study could obtain
a maximum score of 22 and a minimum score of 0. Cri-
teria used to rank the quality assessment of each study
include: i) £49% = Low quality; ii) 50% and 69% = Moder-
ate quality; iii) above 70% = High quality.

Results

Study selection

Figure 1 shows the process of searching and selecting
articles based on the PRISMA flowchart. We found a
total of 15,064 articles by searching in PubMed, Web of
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Science, and Scopus databases. After removing duplicates
(n=6537), We took three steps: (1) screening the article
titles, (2) reviewing the article abstracts, and (3) review-
ing the full text of the articles and extracting the data by
the second group. Based on the predetermined criteria,
we eliminated 8,408 studies during the one and two-stage
process. In the third stage, from 119 articles unrelated
studies (n=86), articles with unavailable full text (z=38),
review studies (n=4), and book chapters (n=1) were
excluded. Finally, 20 articles entered the third stage, i.e.,
a review of the full text of the articles. The research team
extracted required data elements such as publication
year, country, journal/conference, purpose, study design,
sample size, sample age range, results, tools, challenges/

Records identified through database searching (n= 15064)
PubMed (n=3542), Web of Science (n=4314), Scopus (n=7208)

Duplicate records removed

Records excluded based on titles and abstract
(n=8408)
Unrelated to the aim of study:

»  Subject-free studies on recommender systems

»  Articles unrelated to PCOS

> Studies that did not develop an Al system or
application

Articles excluded (n= 99)

(n=6537)
v
.éﬂ Records that should be reviewed
§ by title and abstract
= (n=8527)
aam A
Full-text articles assessed for
B eligibility (n=119)
3
B
i
—/ v
-“g’ Articles included in literature
g review (n=20)

Unrelated to the aim of study (n= 86)
Full text not available (n= 8)

Review articles (n=4)

Book chapter (n=1)

YV V VY

Fig. 1 PRISMA flow diagram indicating results of identification and screening process for included and excluded papers
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Fig. 3 Distribution of studies by country

limitations, Relevance to the study and system target. We
recorded the extracted data in an Excel (Table 1).

Publication analysis

Distribution of studies by year The studies were con-
ducted from 1997 to 2023. Figure 2 shows the results. 2021
(n=5) has the most frequency. The second frequency was
related to 2018 and 2022. (n=3).

Distribution of studies by country The reviewed stud-
ies were conducted in eight different countries. The fre-
quency of these studies in each country is depicted in
Figs. 2 and 3. India had the highest number of studies
(n=9), followed by Indonesia (n=3), the United States of
America, and China (each with 2), ranking second and
third, respectively.

Distribution of articles based on journal/conference
name, publisher and impact factor The articles were
appeared in 11 different journals and seven conferences.
The journal “Frontiers in Endocrinology” had the highest
number (n=2), while all the other journals had only pub-
lished 1 article. All conferences, except the “International
Conference on Data and Information Science,” presented
a paper on the topic. Tables 2 and 3 display the distribu-
tion of articles in this field.

Study specifications

Frequency of studies based on Al/application Based
on the survey, most (95%) of the studies focused on mod-
els and systems utilizing Al technology [2, 16, 21-37],
while only one study resulted in the creation of an Al-
based application [18].
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Table 2 Distribution of articles based on journal/conference name, publisher and impact factor

Journal/conference name Cite Publisher Indexed in IF Count
Score quartile (ISl, Scopus, PubMed) of
papers
Human Reproduction Q1 ProQuest ISI, Scopus, PubMed 6.1 1
International Journal of Circuit Theory and Applications (IJCTA) QI Wiley ISI, Scopus 23 1
Information Systems Design and Intelligent Applications - - - - 1
Bioscience Biotechnology Research - - - - 1
International Journal of Computer Applications Q2 Other ISI, Scopus 1.1 1
Webology Other 1
Frontiers in Cell and Developmental Biology Q2 Other ISI, Scopus, PubMed 55 1
Journal of Medical Internet Research (JMIR) Q1 Other ISI, Scopus, PubMed 74 1
Healthcare Analytics - Other Scopus 1
Table 3 Distribution of articles based on conference name
Conference name Countof Frequency of studies based on the type of system
papers application: When it comes to systems and applications
IEEE India Conference (INDICON) 1 designed for various purposes, they can be classified into
International Conference on Information and Communica- 1 three types: prediction, diagnosis, and management.
tion Technology (ICOICT) Among all the conducted studies, 60% focused on diag-
International Conference on Data and Information Science 2 nosis [2, 16, 24-26, 29, 30, 32, 33, 35-37], 30% on pre-
IEEE Region 10 International Conference Tencon 1 diction [21-23, 27, 31, 34], and none on management.
International Conference on Advances in Biomedical Engi- 1 Additionally, 10% of studies focused on both diagnosis
neering (ICABME) and prediction [18, 28]. However, none of the studies
Proceedilngs Of International Conference on Frontiers in 1 examined the role of nutrition in managing PCOS.
Computing and Systems
International Conference on Engineering and Emerging 1 . . .
Technologies (ICEET) Specifications of performance metrics for model eval-
uation Table 4 displays the metrics utilized in the arti-
Table 4 Performance metrics for model evaluation cles. MAE [23], RMSfE [23’ 33], and RRSE [23] calculate
Metric Formula Range  Desirable three typ<‘es of errors in 1mplemented models, so .the low-
Precision TP/ TP+FP 0-100%  Max est value is considered for an ideal model. MAE in math-
Sensitivity/ Recall  TP/TP+ FN 0-100%  Max ematics is the arithmetic equivalent of absolute errors.
Specificity TN /TN + FP 0-100%  Max This criterion only measures the magnitude of the error
Accuracy TP+TN/TP+TN + FP 0-100%  Max and does not give a significant indication of the direction
+FN of the error. These three criteria have been used in a study
F— Measure (2 * Precision * Recall) / 0-1 Max to evaluate the model’s performance [23, 33].
(Precision +Recall) The Kappa statistic is a tool that evaluates the effective-
Positive Predictive  (sensitivity * prevalence) /  0-100%  Max ness of a model’s reliability and ensures an accurate rep-
Value (PPV) [ (sensitivity * Prevfleme) resentation of changes in collected data. It can range
jg:e;aslzigg)cm . from —1 to +1. Despite being a common statistic, there
Kappa statistic (TP*TN- FN* FP/ 01 Max is no consensus on measures of it in health studies. It has
(TP+ FP*(FP+ TN)*(TP+ been utilized solely in one study [38].
FN)*(FN+TN) Most studies commonly used Sensitivity [2, 18, 28-30,
Mean Absolute (/n)Z(=1ton)ly_i-y_| LBO Min 32-37], Specificity [2, 28], and Accuracy [2, 18, 26, 28—
Error (MAE) 30, 32-37] as criteria. These metrics measures by True
Root Mean VE(=1ton) (_i-y_)/N LBO Min Positive (TP), True Negative (TN), False Positive (FP),
(Syﬁnjgr;d Error and False Negative (FN). F1 score or F — Measure as a
Root Relative JS=1t0 ) (=2 /Sl=1 O Min harmonic average of accuracy and recal‘l. Where there is
Squared Error to n) (H-"H2 a balance between accuracy and recall, it is a better met-
(RRSE) ric [2, 18, 26, 28-30, 32-37].
Area Under the 0-1 Max
Curve (AUC) Specifications of decision support systems for PCOS
Precision-Recall 0-1 Max prediction
Curve (AUPR)

As presented in Table 1, Eight studies [18, 21-23, 27, 28,
31, 34] designed a model to predict disease. These studies
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used Decision trees [22, 31], Topology-preserving for-
ward network [21], multi-layer perceptron [21], NERS
[23], Artificial neural network [23], Apriori algorithm
[27], NB classifier method [28], LR [18, 28], KNN [18, 28,
31], CART [28], RF Classifier [18, 28], Gaussian Naive
Bayes [18], Fuzzy [31], CNN [34], GCN techniques [34]
and SVM [18, 28, 31].

Specifications of decision support systems for PCOS
diagnosis

Automated detection models based on database: Eight
studies [2, 18, 28-30, 32, 36, 37] have implemented auto-
mated detection models based on a database to diagnose
or screen patients automatically. These studies aimed to
diagnose diseases automatically by creating an Al-based
model using readily available data or data from those who
seek treatment at health centers. The studies all followed
a similar methodology. They first collected data from
healthy and sick individuals. After that, they performed
pre-processing to identify parameters and characteris-
tics. They designed the model using selected techniques
and evaluated its performance using model evaluation
metrics. The studies utilized various methods such as LR
[2, 28-30], Bayesian classifier [2], DT [29, 37], SVM [18,
28-30, 37], CNN [32], KNN [18, 28], quadratic discrim-
inant classifier [18, 29], RF [18, 28-30], CART [28, 30],
Gaussian naive Bayes [18], and K-means clustering [36]
to develop the automated diagnosis model.

Classification models based on images: Four studies
[24-26, 35] have developed a diagnostic model for this
disease using ultrasound image classification. Ultrasound
images were used to train and test the model., and differ-
ent methods such as CNN [24-26], and SVM [26] were
used in these studies.

Follicle segmentation models: Two studies [16, 33] cre-
ated a model to segment follicles in ultrasound images for
automatic disease diagnosis. The model specifically diag-
noses through follicle segmentation, reducing the time
needed for follicle counting. The process began with the
publication of images, followed by image processing to
segment the follicles. After extracting features, classifiers
were used to design the model. Techniques used during
the pre-processing stage included histogram equaliza-
tion, contrast enhancement, and the Wiener filter for
noise reduction of the images. The segmentation stage
utilized the Fuzzy logicis, Hybrid Intelligent, Water Drop
(IWD), KNN, SVM [33] and K-means clustering [16].

Limitations and challenges mentioned in the studies

As presented in Tables 1 and 10 studies pointed out the
limitations and refinements. Accordingly, the small vol-
ume of sample size and features in 4 studies, the need
to conduct more studies in 3 studies, the increase in the
time of automatic diagnosis by the system by using more
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data in one study [26], the unwillingness of patients to
disclose reports and clinical data in one [19] and the need
to improve accuracy using other classifiers is mentioned
in one study [2].

Quality assessment of included studies

The quality assessment of the included studies is detailed
in the Supplementary file (Table S4), with 17 studies
rated as high quality and three as moderate qualities.

Discussion

The purpose of this study was to conduct a thorough
review of recommendation systems for women with
PCOS. Specifically, we focused on models or applica-
tions that utilized artificial intelligence. We collected
information from various sources such as publication
year, country, journal or conference, sample size, age of
participants, limitations and challenges, and results. Dur-
ing systematic review, we found five studies that shared
a similar approach [2, 11, 12, 14, 17, 19]. . We found rea-
sons for using mobile or Al-based recommender systems
in PCOS disease management. We will now delve into
the study’s findings and other studies.

Abhari et al. investigated nutritional recommendation
systems without considering a specific disease. In this
study, we reviewed the proposed recommender systems
for polycystic ovary syndrome with its various applica-
tions [14].

Based on the study results, obesity in people with
PCOS, with the escalation of symptoms, increases the
cost of treatment and reduces it, especially in infertility.
The expenditure of lifestyle modification with the help of
health and weight loss is lower than drug therapy. Modi-
fying lifestyle and nutrition using mobile phones is con-
sidered a low-cost intervention with a lower percentage
of invasion [20]. The results of a 2018 study by Jacque-
line A. Boyle and colleagues in Australia showed that a
quality disease management application met the needs of
patients; however, none of the applications reviewed had
quality [12].

As mentioned, early diagnosis of the disease in the
early stages is associated with risk reduction of disease
consequences. Therefore, we may need recommender
systems to reduce risk reduction and time of the diag-
nosis and increase accuracy [32]. One study by Naila
Jan and colleagues in 2023 investigated Al techniques
for PCOS diagnosis. The results of this study show that
early diagnosis of this disease is difficult despite different
symptoms in people, so automatic detection systems can
be used as an accurate solution in this field [17]. As with
our results, the existence of a limited amount of data is
considered as one of the obstacles to the implementation
of this type of study [17, 27].
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Two studies conducted by Naila Jan and colleagues in
India in 2022 reported a PCOS rate of 3.7 to 22.5%, which
was higher in urban than rural women [11, 17]. Based
on the review, 40.9% of studies have been conducted
in India, which justifies the high rate of PCOS. Also,
unhealthy lifestyles, including unhealthy eating, can be a
reason for most urban women to do this.

Among the models designed to predict PCOS, the best
accuracy belongs to a fuzzy logic-based model with an
accuracy of 98.2% [31]. In the field of PCOS diagnosis, a
hybrid model based on ANN, CNN and InceptionV3 has
the best performance among the designed models with
an accuracy of 98.12 [35]. RF and SVM were two widely
used algorithms with acceptable performance, but the
performance of the CNN-based model with 97% accu-
racy is better than these two algorithms [32]. Based on
the study by Naila Jan and colleagues, the best perfor-
mance belonged to a CNN-based system with an average
of 76.36% and a micro-average fl1-score of 100%. KNN,
ANN, and Fuzzy logic with an accuracy of 97%, 97.5%,
and 97.30 were the best classification techniques among
the reviewed articles [11, 17].

Another study in 2018 by Jue Xie and colleagues in
Australia aimed to investigate the AskPCOS application
and the steps involved in creating it. The results showed
that the mentioned program is one of the best evidence-
based user programs to manage PCOS disease. Due to
the support of 5 common languages of the world, it can
eliminate the inequality of lack of access to information
in developing countries. According to the evaluation, 80%
of people were satisfied. The application’s usefulness was
70%. Jacqueline A. Boyle’s study showed that evidence-
based application programs positively affect the patient’s
awareness [19].

Study limitations The study has several limitations. (1)
only two studies addressed the aspect of concomitant
health management in PCOS. (2) there is a lack of access
to several paid articles that can provide better results by
reviewing them. 3, the case was a similar study in other
developing countries such as Iran, which may cause prob-
lems in the results of this study in this country. Therefore,
we recommend carrying out more specialized studies
about recommender systems. We should use Al to modify
lifestyles to nutritional patterns, such as providing a dedi-
cated budget, creating motivation, and creating a culture
among researchers.

Conclusion

We conducted a systematic review to explore the use of
AI and companion health systems in managing polycys-
tic ovary syndrome, with a focus on nutrition. Although
AI has primarily been used for disease diagnosis, the
positive impact of AI and companion health systems in
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providing nutrition-based treatment solutions is signifi-
cant. Therefore, we recommend that countries, particu-
larly those with a high number of affected individuals,
prioritize policies that encourage further studies to eval-
uate the effectiveness of recommendation systems on the
nutrition of people with polycystic ovary syndrome. We
can work on the quality of life for individuals affected by
this condition.

Abbreviations
Al Artificial Intelligence

PCOS  Polycystic ovary syndrome
SOM Self-Organizing Map
TPFN  Topology-Preserving Forward Network
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SVM Support Vector Machine
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CNN Convolutional Neural Networks
LDR Linear Decision Analysis
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